\qquad
\qquad

8.6 - The Distance Formula

Find the distance between each pair of points. Keep your answer in simplest radical form.

1) $(10,20),(13,16)$

$$
d=5
$$

2) $(15,37),(42,73)$

$$
d=45
$$

3) $(-19,-16),(-3,14)$
$d=34$
4) $(13,2),(7,10)$

$$
d=10
$$

5) Find the perimeter of $\triangle \mathrm{ABC}$ with vertices $\mathrm{A}(2,4), \mathrm{B}(8,12)$, and $\mathrm{C}(24,0)$.
6) Determine whether $\triangle \mathrm{DEF}$ with vertices $D(6,-6), E(39,-12)$, and $F(24,18)$ is scalene, isosceles, or equilateral.
7) Determine whether $\triangle \mathrm{GHI}$ with vertices $\mathrm{G}(2,6)$, $\mathrm{H}(18,2)$, and $\mathrm{I}(12,12)$ is isosceles, right, isosceles right, or equilateral.

8)

Describe and correct the error in finding the distance between $\mathrm{A}(6,2)$ and $\mathrm{B}(1,-4)$.

$$
\begin{aligned}
A B & =\sqrt{ }(6-2)^{2}+[1-(-4)]^{2} \\
& =\sqrt{4^{2}+5^{2}} \\
& =\sqrt{16+25} \\
& =\sqrt{41} \\
& \approx 6.4
\end{aligned}
$$

Thy dian" alow the field! $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(z_{2}^{*}=-y_{2}\right)^{2}}$
lososetes right

$$
\begin{aligned}
& =\sqrt{(1-6)^{2}+(-4-2)^{2}} \\
& =\sqrt{25+36} \\
& =\sqrt{61} \approx 7.8
\end{aligned}
$$

For Exercises 9-11 use $\triangle \mathrm{ABC}$ with vertices $\mathrm{A}(-2,-2), \mathrm{B}(4,0)$, and $\mathrm{C}(0,6)$.
9) Find midpoints M, N, and P of $\overline{A C}, \overline{C B}$, and $\overline{A B}$, respectively.

$$
M(-1,2), N(2,3), P(1,-1)
$$

10) Find the slopes of $\overline{M N}$ and $\overline{A B}$, the slopes of $\overline{M P}$ and $\overline{B C}$, and the slopes of $\overline{N P}$ and $\overline{A C}$. How do they compare?

$$
\begin{aligned}
& \text { slope } \overline{M N}=\operatorname{slopec}_{A B}=\frac{1}{3} \\
& \operatorname{slopec}_{M B}=\operatorname{slopec}_{\overline{B C}}=-\frac{3}{2} \\
& \text { slope } \overline{N P}^{2}=\operatorname{slope} \overline{A C}=y
\end{aligned}
$$

11) Find the lengths of $\overline{M N}$ and $\overline{A B}$, the lengths of $\overline{M P}$ and $\overline{B C}$, and the lengths of $\overline{N P}$ and $\overline{A C}$. How do they compare?

$$
\begin{array}{ll}
M N=\sqrt{10}, A B=2 \sqrt{10} & \text { Each midsegment, } \quad \text { the he third side. } \\
M P=\sqrt{13}, B C=2 \sqrt{13} & \text {. The the } \\
N P=\sqrt{17}, A C=2 \sqrt{17} &
\end{array}
$$

12) Your school is 20 blocks east and 12 blocks south of your house. The mall is 10 blocks north and 7 blocks west of your house. You plan on going to the mall right after school. Find the distance between your school and the mall assuming there is a road directly connecting the school and the mall. One block is 0.1 mile.
13)

A path goes around a triangular park, as shown.

$$
\begin{aligned}
d & =\sqrt{(20--7)^{2}+(-12-10)^{2}} \\
& =\sqrt{27^{2}+(-22)^{2}} \\
& =\sqrt{1213} \approx 34.82 \text { blocks } \\
& 34.82 \times 0.1 \approx 3.482 \approx 3.5 \text { wiles }
\end{aligned}
$$

a. Find the distance around the park to the nearest yard.

b. A new path and a bridge are constructed from point Q to the midpoint M of $\overline{P R}$. Find QM to the nearest yard.

$$
\begin{aligned}
& M(45,30) ; Q(10,10) \\
& Q M=\sqrt{(10-45)^{2}+(10-70)^{2}} \\
& \approx 40 \text { yards }
\end{aligned}
$$

c. A man jogs from P to Q to M to R to Q and back to P at an average speed of 150 yards per minute. About how many minutes does it take? Explain your reasoning.

$$
\begin{aligned}
& M(45,30), R(80,10) \\
& M R=\sqrt{(80-45)^{2}+(10-30)^{2}} \\
& \simeq 40 \\
& P \rightarrow Q \rightarrow M \rightarrow R \rightarrow Q \\
& 40+40+40+70+40=230 \mathrm{~g} 1 \mathrm{~s}
\end{aligned}
$$

